A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.
نویسنده
چکیده
Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology.
منابع مشابه
Bayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملGaussian Process-Based Bayesian Nonparametric Inference of Population Trajectories from Gene Genealogies
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly...
متن کاملGaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly...
متن کاملBayesian Nonparametric Inference of Population Size Changes from Sequential Genealogies
Sophisticated inferential tools coupled with the coalescent model have recently emerged for estimating past population sizes from genomic data. Recent methods that model recombination require small sample sizes, make constraining assumptions about population size changes, and do not report measures of uncertainty for estimates. Here, we develop a Gaussian process-based Bayesian nonparametric me...
متن کاملJoint Inference of Microsatellite Mutation Models, Population History and Genealogies Using Transdimensional Markov Chain Monte Carlo
We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theoretical population biology
دوره شماره
صفحات -
تاریخ انتشار 2017